Skip to main content

पाठ- ८ Qb Dipप्रश्न संगालाे कम्प्युटर

कम्प्युटर computer
Practical subject 3 yr Diploma
Programme:computer
Yr 1st
Sem 1st
Computer I/I
Computer Fundamental
20
8
Chemistry
10
4
Engg. Drawing
40
16
Physics
10
4
C-Programming
20
8
 sem 2nd
Computer I/II
Electrical Engineering
20
8
Digital Logic
20
8
Web Technology
20
8
Physics
10
4
Programming in C++
20
8
Chemistry
10
4
Yr 2nd
Sem 3rd 
Computer II/I
Electronic Device and Circuit
20
8
Microprocessor
20
8
Web Technology and Programming
20
8
Data Structure and Algorithm
20
8
Visual Programming
20
8
 sem 4th
Computer II/II
Data Communication
20
8
Software Engg.
20
8
DBMS
20
8
Com. Architecture
20
8
Com. Repair & Maintenance
20
8
Yr 3rd
Sem 5th 
Computer III/I
Embedded System
20
8
Computr Network
20
8
Applied Operating System
20
8
MIS
10
4
Computer Graphics
20
8
Elective-I
20
8
Minor Project
20
8

 sem 6th
Computer III / II
E - Commerce
10
4
Multimedia Technology
20
8
Artificial Intelligence
20
8
Elective II
20
8
OOAD
20
8
Major Project
40
16





इन्जिनियरिङ (अभियांत्रिकीशास्त्र) भनेको मानविय समस्या समाधानका लागि प्रबधिको प्रयोग गरिने विज्ञान हो। बास्तवमा, इन्जिनियरिङ एक ब्यबसायिक कार्य हो जसमा सोच, फैसला गर्ने क्षमता , र बौदिक ज्ञान प्रयोग हुन्छ, जसमा बिज्ञान, प्रबिधि, गणित, र प्रयोगात्मक अनुभव प्रयोग गरि परिक्लपना, उत्पादन, र उपयोगि वस्तुको प्रयोग अथवा क्रम हो जसले मानबताको आवस्यकता र रहर पुरा गर्ने बिषय हो. इन्जिनियरिङको ब्यबसायिक प्राविधिकलाई इन्जिनियर भनिन्छ।
computer:
blogger.g?
'"कम्प्युटर"अंग्रेजी: Computer जसलाई नेपालीमा 'सुशाङख्य' पनि भनिन्छ एउटा प्रोग्रामेबल यन्त्र हो। यस यन्त्रको बनावट लगातार रस्वचालित भई गणितिय अथवा तार्क्रिक क्रमांकहरूको कार्य पुरा गर्ने हुन्छ। कुनै पनि क्रमांकको कार्यलाई चाहे जति परिवर्तन गरेर कम्प्युटरलाई एक भन्दा धेरै समस्याहरू समाधान गर्न प्रयोग गर्न सकिन्छ।
सामान्यत: कम्प्युटरमा हुने एक प्रकारको मेमोरिमा तथ्याङ्क भन्डारण गरिन्छ, कुनै एक वस्तुले गणितिय तथा तार्क्रिक कार्य गर्दछ भने अर्को क्रमांक तथा नियन्त्रण वस्तुले कार्यहरूको श्रेणि जानकारिको भन्डारणको आधारमा परिवर्तन गर्दछ। यसमा हुने पेरिफेरल साधनहरूले जानकारिलाई बाहिरि बाट भित्र्याउनुका साथै परिणामलाई बाहिर श्रोता समक्ष पुर्याउँछन्।
कम्प्युटरको प्रोसेसिङ विभागले जानकारिहरूको पंक्ति सम्पादन गरेर तथ्याङ्क पठ्नेनिर्वाहित गर्ने तथा भन्डारण गर्ने गर्दछ। निर्णायकजानकारिले क्रमांकिक जानकारिलाई यन्त्रको अथवा वातावरणको हालको अवस्थाको क्रित्यका आधारमा परिवर्तन गर्छ।
पहिलो विध्युतिय कम्प्युटरहरू २०औं शताब्दिको मध्य(सन् १९४०-१९४५)मा विकसित भएका हुन्। मौलिक रूपमा, तिनिहरू ठुला कोठाको जत्रो नाप भएका र विध्युतिय खपत हजारौं आधुनिक कम्प्युटरहरूले जति गर्ने खालका थिए।
आधुनिक कम्प्युटरहरू ईन्टिग्रेटेड सर्किट्स प्रविधिका आधारमा बन्ने भएकाले यिनिहरू पहिलेका यन्त्रभन्दा लाखौं-करोणौं गुना बडि क्षमतावान् र नाप मात्र केही अंशका हुन्छन्। सामान्य कम्प्युटरहरू प्रशस्तै सानो हुने हुँदा यिनिहरू मोबाईल साधनमा सजिलै अटाउँछन्मोबाईल कम्प्युटरलाई विध्युतिय पावर साना ब्याट्रिबाट सजिलै उपलब्ध गराउन सकिन्छ। पर्सनल् कम्प्युटरहरू आफ्नो अनेकौँ रूपमा ईन्फर्मेसन् युगका मर्ति हुनुका साथै धेरै मानिसले सोच्ने गरेका 'कम्प्युटर्स्' हुन्। अन्तत: ईम्बेडेड कम्प्युटरहरू धेरै खाले उपकरणहरू एम पि थ्रि प्लयेर्स् देखि आधुनिक युध्द विमान  खेलौना देखि उध्योग यन्त्रमानव सम्म प्रचुर मात्रामा प्रयोग गरिन्छ।
source :google
Nepal Polytechnic Institute (NPI)blogger
College of Engineering, Bharatpur
Internal Exam 
Subject: Basic Medical Electronics                            F.M. =50
Class: Electrical III/I                                  
Attempt all Questions:
1.     What is current source and voltage source? Explain the conversion of Voltage Source into current source       (1+1+8=10)
2.     Explain vacuum tutored with its figure?      (8)
3.      Explain generalized dynamic characteristics? (10)
4.     Explain electronic in Medical Science                   (5)
5.     Explain Piezoelectric sensor with its figure   (8)
6.     Explain SI Unit and explain the application of electronics.                                    (4+5=9) 
Medical Electronics-II
1.      What are the chemical fibers seasons? Write down their feature?.                                                                   10

2.      What is electrode electrolyte interface? Explain with the help of figure?                                                                     10
3.      What is cardio meter? Explain the beat to beat cardio meter with the help of block diagram?                                     10
4.      What are the body surface recording electrodes? Explaining two of them       .                                                           10
5.      Write short notes on                                                     10
A)    EMG
B)     ISFET
C)     EIEG(EEG)
------------------The end --------------------------***Best of Luck***
 Subject: - Basic Medical Electronics
  1. What is current source and voltage source? Explain the conversion of Voltage Source into current source                                         (1+1+8=10)
  2. Explain vacuum tutored with its figure?        (8)
  3.  Explain generalized dynamic characteristics? (10)
  4. Explain electronic in Medical Science                        (5)
  5. Explain Piezoelectric sensor with its figure    (8)
  6. Explain SI Unit and explain the application of electronics.                                        (4+5=9) 
1.     Subject: Computer Application
      What are various generation of computer? Explain.
2.      What are different types of computer? Explain.
3.      What are external and internal MS-DOS commands? Explain any four internal and any three external commands with syntax.
4.      What is computer virus? Explain the process of cleaning of viruses and types of virus.
5.      Write short notes on: (any TWO)
a.      CPU
b.      Magnetic disk
c.      Software & Hardware
laifo M G]fkfnL  
;a} k|Zgx? clgjfo{ 5g\ .

Kf|Zg g+  !   lha|f]sf] prfO / ;lqmotfsf cfwf/df tnsf j0f{x?nfO{ lrgfpm .
            c, cf, O, p, P, cf]
Kf|Zg g+  @   pRrf/0f :yfg / 3f]ifTjsf cfwf/df tnsf] j0f{x?nfO{ lrgfpm .
            v, 5, 6, w, e, o, ;, x
Kf|Zg g+  #   tnsf zAbx?sf] cIf/ ;+/rgf b]vfO{ cIf/ ;+Vof;d]t n]v .
            nf]stGq, zflGt, k|fljlws, lzIff, eQmk'/, cfGbf]ng, b]z, cfdf
Kf|Zg g+  $  :j/ / Jo~hg j0f{sfjLr kfOg] d'Vo leGgtf s] x'g< a'bfut ?kdf pNn]v u/ .
Kf|Zg g+  %   agf]6sf cfwf/df zAbx?sf] k|sf/ pNn]v u/L pbfx/0f ;d]t n]v .

Kf|Zg g+  ^   /]vflËt zAbx?sf] zAbju{ -kbju{_ pNn]v u/ .
                  Pp6} l;/fg u/]/ ;'t]kl5 slxn]sfxL uf]8f nfU5 gfO, emu8f ef] eGb}df wd{ 5f]8\g' x'G5 < cfkm"n]       =;f‘rf] dgn] pksf/ u/]kl5 p;sf cfTdfn] klg s/ nufp‘5 .
Kf|Zg g+  &   sf]i7leqsf] wft' / ;+Í]t cg';f/ zAbsf] ?k /fvL vfln 7fp e/ .
s_          ltd|L 5f]/Ln] /fd|/L=====================- k9M O{R5fy{ _
v=          d}n] efO{nfO{ lrl6\7 =======- n]v\M k"0f{  e"t_
u=          ltd|f] s'/f ;'g]/ sfsL =======- xfF;\M ;fdfGo eljiot\_
3=          ljBfyL{x?4/f lzIfs;+u ga\em]sf] s'/f =======- ;f]w\M sd{jfRo _
8==         7"nf] ;+s6df k/]/=======- afr\M efjjfRo _
r=          ltdL ef]ln 3/ =======- hfM cf1fy{ _
5=          rf]/n] d]/f] k}zf =======- rf]/M c1fte"t _
h=          s[i0fn] leIff=======- lbM ;+defjgf eljiot _
          
Kf|Zg g+  *  lnË arg / cfb/sf] cfwf/df tndf  zAbsf] ?kofg  u/ .
l76f],5f]/f],sflG5,/fd|f]
Kf|Zg g+  (  tnsf pk;u{ tyf k|Too nufO{ Ps Psj6f zjb lgfdf{0f u/
lj , cg' , pt\ ,ck ,O{ , Ot , pjf
Kf|Zg g+  !) tnsf j0f{x? s'g s'g pRRffo{ / s'g s'g n]Vo - cltl/St _ x'g .
h, 0f, `, z
Kf|Zg g+  !!  tnsf       zAbx? gfd eP / lain];0f eP  gfddf kl/jt{g u/ .
            cDdn, emfkfnL, lzsf/, /f]u,hfF8, 3/]n', ;'Gb/ ,lw/
;lsof] . 
****;dfKt*****

ljifo M g]kfnL 
!_tnsf] uBf+z k9L cGTodf ;f]lwPsf k|Zgx?sf] pQ/ lbg' xf];\
       clxn];Dd b]zljsf;sf nfuL cfjZos / b]zleq pTkfbg ug{ ;lsg] d]l;g/L
Tfyf pRr k|ljlwsf k'FFlhut j:t'x? clws+fz j}b]lzs ;xfotfaf6 k'lt{ xFb} lyof] . t/
b]zn] clxn] eGbf a9L cfly{s ljsf; ug]{ xf] eg] a9\wf] k}7f/Lsf] cfjZostfnfO{ k'lt{
ug{ clxn] kfpg] u/]sf] j}b]lzs ;xfotfsf] kl/df0f ckof{Kt x'g ;S5 . km]/L ljb]zL ;xfotfdf ca C0fsf] c+z a9\sf] 5 . kl5 uP/ of] C0fsf] ;Ffjf / Jofh r'Qmf ug'{ kg]{ x'G5 . a9\of] k}7f/L / ljb]zL C0fsf] ;Ffjf / Jofh r'Qmf ug]{ cy{tGqnfO{ ;Ifd t'Nofpg b]zsf] lgsf;L Ifdtf a9fpb} n}hfg' cfjZs x'G5 . cGoyf ljb]zL ljlgdosf] sdL b]zsf] b|'tt/ cfly{s ljsf;df cj/f]w aGg ;Sg] 5.

Aff]w k|Zgx?
s_ b]zn] cfly{s ljsfzsf nflu j}b]lzs ;xfotfdf lge{/ /xg' sxfF ;Dd xf] < -@_
v_] cfly{s ljsfzsf nflu j}b]lzs ;xfotf / C0fsf] ljsNk s] x'g ;S5 < -@_
u_ ljb]zL ;xfotfdf s] a9]sf] 5 < -@_
3_ dflysf] cg'R5]bsf] pko'Qm zLif{s s] x'g ;S5 < -@_
zAb e08f/
ª_ tnsf zAbx?sf] cy{ n]Vg'xf];\ -@_
       ljlgdo
       cj/f]w
r_ cy{ v'Ng] u/L jfSodf k|of]u ug'{xf];\ -@_
       j}b]lzs ;xfotf
lgsf;L
5_ dflysf] cg'R5]bsf] clGtd jfSo ;/n, ;+o'Qm / ld>dWo] s'g xf] <  -@_
Hf_ pk;u{ / k|s[lt k|Too 5'6\ofpg'xf];\ <-@_
       j}b]lzs
       cj/f]w
       kl/df0f
       lgsf;L
@_ k|Zg g+ ! sf] cg'R5]bnfO{ Ps t[tLof+zdf ;+If]kLs/0f ug'{xf];\ M -$_
#_ g]kfndf s[ifL Jofj;fosf] dxTj ljifodf !)) ZfAb;Dd sf] Ps cg'R5]b n]Vg'xf];\ -$_
$_ sg} Ps zLif{sdf @%)zAb g36fO{ Pp6f lgaGw n]Vg'xf];\ -*_
       s_ ko{6ssf] dxTj
       v_ b]z ljsfzdf k|fljlws lzIffsf]] dxTj
%_ s'g} b'O{sf] pQ/ n]Vg'xf]; \   (      *
s_ l5d]sL syfn] s] s:tf] ;fdlos ;Gb]z lbPsf] 5 < :ki6 kfg'{xf];\
v_ dxfk'?ifsf] ;+Ët lgaGwdf s] s:tf] Jo+Uo
u_ dw'dfntLsf] syfdf uf}/Lsf] s] s:tf] dfgl;s l:yltsf] lrq0f ul/Psf] 5 <

ljifo M g]kfnL
Kf|Zg g+  !=     Eflifs e]b eg]sf] s] xf] < dfgs / cdfgs eflifs e]bsf] pbfx/0f;lxt kl/ro lbg'xf]; .   

Kf|Zg g+ @       Tfnsf] u2fz+ kl9 cGtdf ;f]lwPsf k|Zgx?sf] 5f]6f] 5l/tf] pQ/ lbg'xf];\ .
 
      l;len O{lGhlgol/Ë crn ;+/rgf ;+u ;DjlGwt 5 eg] oflGqs O{lGhlgol/Ë d"n ?kdf rn ;+/rgf;+u ;DalGwt 5 . oflGqs O{lGhlgol/Ë cGt{ut snsf/vfgfx?sf] of]hgf th'{df , l8hfO{g,clesNk ;+rfng ,dd{t ;+ef/ Joj:yfkg cflb kb{5g\ . To;} ul/ o; cGt{ut d]l;gx?sf] l8hfO{g . clesNk. th'{df, pTkfbg, dd{t ;+ef/ cflb ;d]t kb{5 . c6f] df]jfO{n . :jrnfog , tfk pTkfbg O{lGhlgol/Ë o; O{lGhlgol/Ësf d'Vo xfFufx? x'g . cf}Bf]lusLs/0fsf nflu oflGqs O{lGhlgol/Ësf] dxTjk"0f{ e"ldsf /xG5 .
ljB't pTkfbg, k|;f/0f, ljt/0f / pkof]u;+u ;|Dalwt kl/of]hgfsf] th'{df ,clesNk,lgdf{0f,;'kl/j]If0f / oGqx?sf] ;+rfng tyf pTkfbg ljB't O{lGhlgol/Ësf bfo/f leq kb{5g\ .
z'?df ljB't O{lGhlgol/Ësf] ! xfFufsf] ?kdf ljsl;t On]S6\lgs O{lGhlgol/Ë xfn O{lGhlgol/Ës} Ps k|d'v ljwfsf ?kdf ljsl;t x'g k'u]sf] 5 . On]S6\f]lgS;sf xfFufx? x'g . sDk'6/ O{lGhlgol/Ë, b'/ ;+rf/ O{lGhlgol/Ë, k|;f/0f-/]l8of] / 6]lnlehg_ O{lGhlgol/Ë lgoGq0f cflb .
 Kf|Zgx?
s=       l;len / oflGqs O{lGhlgol/Ë s'g s'g ;+/rgf;+u ;DalGwt 5 <
v=       oflGqs O{lGhlgol/Ë cGt{ut kg]{ If]qx? s]s s] x'g <
u=       ljB't O{lGhlgol/Ësf bfof/f leq s] s] kb{5g\ <
3=       dflysf u2f+zsf nflu pko'St lzif{s /fVg'xf]; <
8=       clesNk,:jrnfog
r=       tfk pTkfbg
5=       dflysf] u2f+zjf6 pk;u{ / k|Too nfu]sf @.@  j6f zJb vf]h]/ n]Vg'xf];\ <


Kf|Zg g+ #    k|Zg @ df lbPsf] u2f+zaf6 d"Vo d'Vo % j6f a'Fbfx? l6Kg'xf]; <

 Kf|Zg g+ $       s'g} Ps lzif{sdf @%) zJb ga9fO{sg lgaGw n]Vg'xf];\ <

s=       g]kfndf k|fljlws lzIffsf] cfjZostf
v=       cf}Bf]lus ljsf;sf] k"j{wf/ lah'nL

Kf|Zg g+  %       aflif{s pT;jsf lbg SofDk;sf ;a} ljBfyL{ ,lzIfs P+j sd{rf/Lx?nfO{ clgjfo{ pkl:ytLsf nflu cg'/f]w ub]{ Ps ;'rgf tof/ kfg'{xf]; < 

                    cyjf

cfkgf] cfly{s cj:yf sdhf]/ /x]sf sf/0f pRr lzIff xfl;n ug{df jfwf k'u]sf] b]vfpb} 5fqj[lt kfpgsf lgldQ SofDk; k|d'vnfO{ lbg] lgj]bg kqsf] gd'gf tof/ kfg{'xf];\ <


Kf|Zg g+  ^                 s'g} Ps s'ltsf] kl/ro lbg'xf];\

s=       ;f}o{ phf{         
v=       O{lGhlgol/Ë g]kfnL

=====;dfKt ======
 ljifo M g]kfnL 
Kf|Zg g+  !=
           s_ :j/ / Jo~hg ju{sf] kl/ro lbg'xf];\ .  $
       v_   tnsf ju{x? dWo] s'g  s'g pRrf/0f cg';f/ n]lvG5g\ / s'g s'g cltl/Q n]Vo lrGx x'g\ <
                  w, v, g, `, If                %
        u_ tnsf zAbx?sf] cIf/ ;+/rgf b]vfO{ cIf/ ;+Vof ;d]t n]Vg'xf];\.             %
  


                                                =====;dfKt ======
 sub: DBMS
Subject:     Web technology and programming I                   
Q N 1   a) What is internet? Explain any three internet protocol.
             b) What is HTML? Explain the elements of HTML.
Q N 2   a) Explain the attributes of body tag.
             b) What is the IMG tag? Explain any four attributes of IMG tag.
Q N 3    What is CSS? What are the ways of introducing CSS file into your                                          web page? Explain with examples.
Q N 4   What is Link in web page? Explain the types of link used in HTML.
Q N 5   What are the attributes of table tag in HTML? Write the HTML source code for the following table and data.
SN
Student Name
Marks
Internal
External
1
Rohit Man Shakya
10
15
2
Barsha Pun
8
13
3
Rupesh Rana Magar
9
12

Q N 6   What is listing tag? Explain about Order list and Un ordered list with each example.

ljifo M ;fdflhs lzIff 
!_ ljZjdfg lrqdf g]kfnnfO{ lrgf/L u/fpg'xf];\ .
@_ g]kfn zAbsf] pTkltsf ;Gbe{df j0f{g ug'{xf];\ .
#_ ;fdflhs lj1fg / k|fs[tLs lj1fg aLr km/s 5'f§ofpg'xf];\ .
$_ ;fdflhs kl/jt{gsf l;4fGtx?sf] lrgf/L ug'{xf];\ .
                cyjf
   k~rlZfnsf] af/]df hfgsf/L u/fpg'xf];\ .
%_ ;dflhs sfo{stf{sf u'0fx?sf] rrf{ ug'{xf];\ .
^_ g]kfnsf] cfly{s ljsf;df hn;Dkbfsf] s] s:tf] e'ldsf /x]sf] x'G5 <
&_ ;+ljwfg ;efsf] u7g / o;sf sfo{x? n]Vg'xf];\ .
*_ g]kfndf hg;+Vof j[l4nfO{ lgoGq0f ug]{ pkfox?sf] rrf{ ug'{ xf];\ .
(_ jt{dfg ;dodf /fhlglts bnx?sf] e'ldsf s:tf] x'g' kb{5 .
   Tfs{ k|:t't ug'{xf];\
                 cyjf
  g]kfnsf] s[lifdf b]vLPsf ;d:of ;dfwfgsf pkfox?nfO a'b+fut ?kdf n]Vg'xf];\ .
!)_ ;fdflhs cg';GwfgnfO{ kl/eflift ub}{ o;sf r/0fx? n]Vg'xf];\ .
!!_  UN/SAARC  -;+o'Qm /fi§;+3÷blIf0f PlzofnL If]lqo ;xof]u ;+u7g_ df g]kfnn] v]n]sf] e'dLsf  cf}+Nofpg'xf];\ .
                        cyjf
   u|fld0f ;dfh / zx/L ;dfh aLr cGt/ s]nfpg'xf];\ .
!@_ g]kfnsf] cfly{s ljsf;df jftfj/0f ;+/If0fsf] e'ldsf s:tf] /xG5 . cf}Nofpg'xf];\ 
 Sub:Maths (civil I/I) 
 
Group A                                                                      10*2=20

1)   In any triangle ABC prove that a = bcosC+ccosB, also prove that b2sin2C+c2sin2B=2absinC:
2)   If the roots of the equation (a2+b2)x2-2(ac+bd)x+(c2+d2)=0 are equal prove that a/b=c/d. Find the quadratic equation whose roots are twice the roots of x2-4x+4=0.
Group B                                                                      6*5=30
3)   If ax= by= cz and a,b,c are in GP prove that x,y,z are in HP.
4)   Solve for general values cos2x-sinx+5=0.
5)   From a group of 11 men & 8 women, how many committees consisting of 3 men & 2 women are possible.
6)   P(α,β) lies on the line 6x-y=1 & Q(β,α) lies on the line 2x-5y=5. Find the equations PQ.
7)   If the point (a,0) (0,b) & (1,1) are co-linear, prove that 1/a+1/b=1
8)   Find the term independent of x in the expansion of (2x+1/3x2)9Sub: Mathematic 
Attemt all question.                                                  1×5=50
 1)If   show that A2-5A+7I=0 where I is the unit matrix of
Order 2.
2)      Prove that x   y   z    
 X2 y2 z2   =(y-z) (z-x) (x-y)(yz+zx+xy)
 Yz zx xy
3)      Find the equation of the plane through the intersection of the plane x+y+z=6 & 2x+3y+4z+5=0 and perpendicular to the plane 6x-5y-3z=0.
4)      Show that the line joining the points(1,2,3) & (-1,-2,-3)is parallel to the line joining the points (2,3,4) & (5,9,13).
5)      Fine the projection  of the line joining the points (1,3,3) & (4,5,8)on the line joining the points(2,0,-3) &(1,-1,-4).
6)      Show that the points (1,3,-1),(1,1,0),(2,5,4) & (2,7,3) are coplanar.
7)      Find the angle between the lines whose direction cosine are l1, m1, n1 & l2, m2, n2.
8)      Find the maximum & minimum value of the curve y=4x3-6x2-9x+1.
9)      Find the minimum value of x2+y2 when x+y=5.
10)  Solve for xx+1  3     5
   2      x+2  5   =0
   2     3       x+4

  Subject: - English
Attempt all Questions:

1.        Read the given passage and answer the questions.

A.      They play hard, they often, and they to win. Australian sports teams win more than their fair share of titles, demolishing rivals with seeming ease. How do they do it? A big part of the secret is an extensive and expensive network of sporting academies underpinned by science and medicine. At the Australian Institute of Sport (AIS), hundreds o youngsters and pros live and train under the eyes of coaches. Another body, the Australian Sports Commission (ASC), finances programmers of excellence in a total of 96 sports for thousands of sportsmen and women. Both provide intensive coaching, facilities and nutritional advice.
B.       Inside the academies, science takes centre stage. The AIS employs more than 100 sports scientists and doctors, and collaborates with scores of others in universities and research centers. AIS sciences work across a number of sports, applying skills learned on one-such as building muscle strength in golfers – to others, such as swimming and squash. They are backed up by technicians who design instruments to collect data from athletes. They all focus un one aim: winning. 'We can't waste our time looking at ethereal scientific questions that don't help the coach work with an athlete and improve performance, says Peter Fricker, chief of science at AIS.
C.       A lot of their work comes down to measurement – everything from the exact angle of a swimmer's dive to the second power output of a cyclist. This data is used to wring improvements out of athletes. The focus is on individuals, tweaking performances to squeeze an extra hundredth of a second here, an extra millimeter there. No gain in too slight to bother with. It's the tiny, gradual improvements that add up to world-beating results. \to demonstrates how the system works, Bruce Mason at AIS shows off the prototype of a 3D analysis tool for studying swimmers. A wire-frame model of a champion swimmer slices through the water, her arms moving in slow motion. Looking side-on, Mason measures the distance between strokes. From above, he analyses how her spine swivels. When fully developed, this system will enable him to build a biomechanical profile for coaches to use to help budding swimmers. Mason's contribution to sport also includes the development of the SWAN (SWimming ANalysis) system now used in Australian national competitions. It collects images from digital cameras
Running at 50 frames a second and breaks down each part of a swimmer's performance into factors that can be analyses individually-stroke length, stroke frequency, average duration of each stroke, velocity, start, lap and finish times, and so on . at the end of each race, SWAN spits out data on each swimmer.
D.       "Take a look ", says mason, pulling out a sheet of data . he points out the data on the swimmers in second and third place, which shows that the one who finished third actually swam faster . So why did he finish 35 hundredths of a second down? His turn times were 44 hundredths of a second behind the other guy's, says Mason. If he can improve on his turns, he can do much better." This is the kind of accuracy that AIS scientists' research is bringing to a range of sports.  With the Cooperative research centre for Micro Technology in Melbourne, they are developing unobtrusive sensors that will be embedded in an athlete's clothes or running shoes to monitor heart rate, sweating. Heat production or any other factor that might have an impact on an athlete's ability to run. There's more to it than simply measuring performance. Fricker gives the example of athletes who may be down with coughs and colds 11 or 12 times a year. After years of experimentation, AIS and the University of Newcastle in New South Wales developed a test that measures how much of the immune-system protein immunoglobulin A is present in athlete's saliva. If LgA levels suddenly fall below a certain level, training is eased or dropped altogether. Soon, LgA levels start rising again, and the danger passes. Since the tests were introduced, AIS athletes in all sports have been remarkably successful at staying healthy.
E.       Using data is a complex business. Well before a championship, sports scientists and coaches start to prepare the athlete by developing a 'competition model', based on what they expect will be the wining times. You design the model to make that time , says mason. 'A start of this much, each free-swimming period has to be this fast, with a certain stroke frequency and stroke length, with turns done in these times.' All the training is then geared towards making the athlete hit those targets, both overall and for each segment of the race . techniques like these have transformed Australia into arguably the world's most successful sporting nation.
F.       Of course, there's nothing to stop other countries copying-and many have tried. Some years ago, the AIS unveiled coolant-lined jackets for endurance athletes. At the Atlanta Olympic Games in 1996, these sliced as much as two per cent off cyclist's and rower's times. Now everyone uses them. The same has headed to the altitude tent', developed by AIS to replicate the effect of attitude training at sea level. But Australia's success story is about more than easily copied technological fixes, and up to now no nation has replicated its all-encompassing system.
Questions 1-7
Reading Passage 1 has six paragraphs, A-F.
Which paragraph contains the following information?
Write the correct letter, A-F, in boxes 1-7 on your answer sheet.
NB          you may use any letter more than once.
1.       a reference to the exchange of expertise between different sports.
2.       an explanation of how visual imaging is employed in investigations.
3.       a reason for narrowing the scope of research activity.
4.       how some AIS ideas have been reproduced.
5.       How obstacles to optimum achievement can be investigated.
6.       an overview of the funded support of athletes
7.       how performance requirements are calculated before an event
Questions 8 – 11
Classify the following techniques according to whether the writer states they
A)      are currently exclusively used by Australians
B)      will be used in the future by Australians
C)      are currently used by both Australians and their rivals
Write the current letter, A, B or C, in boxes 8-11 on your answer sheet.
8.       cameras
9.       sensors
10.    protein tests
11.    altitude tents

Questions 12 and 13
                Answer the questions below.

Choose NO MORE THAN THREE WORDS ANDIOR A NUMBER from the passage for each answer.

Write your answers in boxes 12 and 13 on your answer sheet.

12.    What is produced to help an athlete plan their performance in an event?
13.    By how much did some cyclists' performance improve at the 1996 Olympic Games?        



  1. Write a job application for the post of junior Engineer for World Link Pvt. Ltd. Kathmandu along with your CV.                                                                                        10
  2. Write a minute as you are a secretary of computer. Technical Nepal.                                                     10
  3. You have just moved into a new home and are planning to hold a party. You are worried that the noise may disturb your neighbor. Now, write a letter to you neighbor. In your letter you have to introduce yourself, describe your plan for the party and invite your neighbor to come.                                                                           10
  4. Write an essay on 'Importance of Technical Education. 7

*****Best of Luck*****
Subject: - C- English
1.      Summaries the plot of the story 'The Boarding House' in a long plot.                                 6
2.      Mention the causes of environment pollution.  6
3.      Highlight the impotence of Martin Luther's speech a long Paragraph.                                   7
4.      Write an essay on 'The Importance of technical education.                                       7
5.      We write following using must, can't, may, might
                                                                        5
a.       I am sure They have been working hard.
b.      maybe he was delayed.
c.       I am convicted that they have forgotten my name.
d.      Obviously she lived in America.
e.       Perhaps he was not a robber.
6.      Report the followings using 'He told me'……
a.       'My father works in a factory.'            5
b.      'I will live here for a year.'
c.       'You don't have to worry about me.'
d.      'They don't have good attitudes.'   
e.       'I have been sleeping very badly.'
7.      Change the followings into adjectives:           4
Offend, Surprise, Interest, Fascinate, Attract, Irritate, Upset, Astonish.


The End
Subject: - English
  1. Write a memo as you are a president of your company. 5

  1. Write an essay on the Important of Technical Education.                                                                        10
  2. Mention the process of summary writing.     5

  1. Write a job application to the project manager of CC Electronics, Kathmandu Nepal.                         10

  1. What is report? Write some similarities and differences of general and technical report writing.                     5

  1. Arrange the following words into alphabetical order. Assize, assistant, assign, accustom, assistance, abstract, abandon, abnormal, appendix, application.
  2. Write a complain letter to the editor of the Kathmandu Post about the growing use of computer.                 10


The End
Subject: - Electronics Drawing
  1. Draw the symbols of following Electronics and Electrical components.
  1. PNP transistor   b. NAND gate    c. j-k flip flop
d.    Variable inductor             e.  Double pole main switch
f.     Ceiling fan.                          g. Diode
2.    Draw the circuit diagram and waveform of "Centre tapped full wave rectifier" OR "Three phase half wave rectification circuit:
3.    Draw the block diagram of "Computer Monitor".
4.    Draw the layout and wiring diagram of two lamp controller from two stations independently with fuse and double main switch.
5.   
        a. Draw the circuit diagram of "Multirange ohmmeter".
        b. Draw the block diagram of "Casssette player".
6.    Draw the block diagram of "Television receiver".

Good Luck
sub:Electronics
1.      Describe the different types of instrument used in instrumentation system. Explain the static performance parameter of an instrumentation system.
2.      What is control system? Describe about control system with the help of block diagram?
3.      State masson’s gain formula. Explain the time response of first order system with unit step unit?
4.      When a second order control system is subjected to a unit step input the values of Eg=0.5 and Wn=6 rad/see. Determine the rise time, setting time, peak time & peak overshoot?
5.      A) Determine the transfer function of electric network shown below.

 b) Determine the stability of the system whose characteristics equation is given by:
254+253+252+35+2=0
6.      Obtain the transfer function for c(s)/r(s) for given signal how graph.

7.      For the given system shown in figure. Determine Kp & Ess for unit step input:

Subject: Artificial Intelligence          
Attempt all questions.
1.      What is game playing? Explain minimax theorem and its algorithm.                                      
2.      Explain inference theorem. Explain various strategies of heuristic search.     
3.      What is expert system? Explain knowledge elicitation technique.
4.      What is machine learning? What are different methods of learing. State any one method.                           
5.      Write short note on (any Three)                                                                                                    
a.       Predicate Calculus
b.      State space representation
c.       Bayesian network
d.      Adaline, madaline
e.       Bothzmann machines
                                               Subject:     Web technology and programming I                  
Q N 1   a) What is internet? Explain any three internet protocol.
             b) What is HTML? Explain the elements of HTML.
Q N 2   a) Explain the attributes of body tag.
             b) What is the IMG tag? Explain any four attributes of IMG tag.
Q N 3    What is CSS? What are the ways of introducing CSS file into your                                          web page? Explain with examples.
Q N 4   What is Link in web page? Explain the types of link used in HTML.
Q N 5   What are the attributes of table tag in HTML? Write the HTML source code for the following table and data.
SN
Student Name
Marks
Internal
External
1
Rohit Man Shakya
10
15
2
Barsha Pun
8
13
3
Rupesh Rana Magar
9
12

Q N 6   What is listing tag? Explain about Order list and Un ordered list with each example.
Subject: Principle of Electrical Engg.           
1.     Define:
(a)  Potential difference   (b) Electromotive force  (c)  Electric Power (d) Inductor
2.     For the following circuit,
(a)  Calculate the equivalent resistance
(b) Find the branch current





3.     Define resistor and resistance. Explain the variation of resistance with temperature.
4.     Define and explain Kirchhoff's current law and Kirchhoff's voltage law in brief.
5.     Explain primary and secondary cell with examples.
6.     12 cells, each of emf 2 volt and internal resistance of 0.5 ohm are connected in series across an external resistance of 4.5 ohm. Determine:
(a)  current supplied by battery
(b) terminal voltage of battery
(c)  fall in voltage per cell
7.     Calculate the branch current from the figure given below:
Subject: - Logic Circuit  
1.
a) Perform following
                I)             (101101.110)2 = (- -) 10
                        II)            (FACE) 16 = (- -)10              
                III)          (BAD) 16 = (- -)8
                IV)          (10111)2 / (100)2 = (- -)2
b)            I)             Subtract (1000.11 – 1111.10) by using 2’S  
Complement method.
                II)            Define Universal gate? Show that NAND gate is
Universal gate.
2.
a)            State and explain De-Morgan’s theorem.
b)            Simplify the following expression using K-map
f (A, B, C, D) = £ (2,4,6,7,8,11,14,15)

3.
a)            Define combination circuit. Explain the working principle of full adder circuit
b)            Define Multiplexer. Explain the working principle of 1 to
4 DEMUX
 Subject: - Electronics Device & Circuit
 
Attempt any Five Question, Question 6 is Compulsory.

  1. What is negative feedback? Explain about effects of negative feedback.                                            10
  2. What is oscillator? Explain Principle, Characteristics and applications of Hartley Oscillator.              10
  3. Explain Low pass filter and band pass filter with necessary circuit diagram and ware forms. 10
  4. Draw the circuit diagram of CC Configuration & explain in detail along with its input and output characteristic curses.                                                             10
  5. What do you mean by DC to DC and DC to AC convertors? Explain fixed type IC voltage regulators. 10
  6. write short notes on: (any Two)                       2*5= 10    
a)      Tuned amplifier
b)      wien bridge oscillator
c)      SMPS

The End
Engineering Chemistry Practical I/ II Part:

1.     To compare the hardness of different types water

2.     To prepare Bakelite (resin) in the laboratory


3.     To determine the condition in which corrosion takes place

4.     To investigate the action of acids on some metals (Zn, Mg, Fe, Al, Sn & Cu) (acids:- HCL, H2SO4 (dil) & HNO3 (dil)
Nepal Polytechnic Institute
Bharatpur, Chitwan
Engineering Physics
1.      Determine Volume of hallow cylinder by Vernier Caliper.
2.      Determine density of a steel/glass ball by using Screw gauge.
3.      Determine thickness of glass plate using Spherometer calculate the area by using millimeter graph paper.
4.      Determine the acceleration due to gravity by using Simple Pendum.
5.      Determine the refractive index of the material of prism.
Chemistry
1.      To Separate Sand and Copper Sulphate crystals in pure and dry state from the mixture of sand and copper sulphate.
2.       To Separate Sand and Calcium Carbonate in pure and dry state from the Mixture of sand and calcium carbonate.
3.      To neutralize dilute sulpharic acid with sodium carbonate silution and to recover crystals of sodium sulphate.
4.      To obtain pure and dry precipitate of barium sulphate by treating excess of dilute sulphuric acid with barium chloride solution.
 sub: ele safety
1.       (a) Write down about safe use of electrical tools. [4]
(b) What are the safety tools that are used for electrical work.  [4]
2.       What is electric shock? What are the possible damages due to electrical shock in human body?Explain about reason behind electric shock.                 [1+4+3]
3.       Explain classification of fire, briefly.                                                                                 [8]
4.       (a) Explain about touch potential.                                                  [4]
(b) Discuss various types of electrodes used for earthing.        [4]
               5. How is earth resistance measured? Explain.      [8]
               6. Write short notes on (any two)   [2*4]
                                                          i.            Earthing mat
                                                         ii.            System grounding
                                                       iii.            Causes of fire hazards
                                                       iv.            Pipe earthiing
                                                        v.            3 pin plug for high rating equipments

 Subject: Computer Architecture

Attempt any four.
1.   a.    Explain about history of computer architecture.                5
b.    Explain about stored program organization.         5
2.    a.    What do you mean by instruction ? Explain about its types. 5
        b.    Explain about address sequencing.          5
3.    Explain about data manipulation instruction.               10
4.    a.    Differentiate about RISC & CISC instruction set. 5
        b.    What IS program interrupt ? Explain.       5
5.    Solve multiplication using, multiplication algoritern. 5
        1110
        ×110
sub : posm
1.       Draw a neat sketch of small hydro power (SHP) plant and explain its civil and mechanical components.

2.       Write about Murray loop test.
3.       Explain about the reconditioning of insulating oil.
4.       Explain in detail about plant operation on isolated  and interconnected mode with necessary figure.
5.       (a) What are the voltage control systems used in generator of a power system.          [5]
(b) Write down the conditions to be satisfied for the synchronization of two alternators.   [3]
       6.   Explain different types of maintenance .What are the advantages of regular maintenance.  [8] 
       7.  Write short notes on (any two)                                                                                       [2*4]
a)      Official Incharge
b)      Reactor
c)       Maintenance of diesel power plant
d)      Substation
sub: autoCAD
Set-A
1)   What is Cad? What are the benefits of AutoCAD?
2)   Define hardware & software?
3)   Write short notes on(any two)
        a)Characteristics of computer  b)Data storage  c)Application of Auto CAD  




Set-B
1)   What is computer? Write sthe advantages of computer.
2 )Write any six drawing toolbars available in draw tool bar of autoCAD. Write their use in one sentence.
3)   Write short notes on(any two)
      a)Application of computer graphics    b)autoCAD window      c)History of computer




Set-C
1)   What is computer? Differentiate between hardware & software.
2) What is CAD? Describe about the types of software used in autoCAD.
3) Write short notes on(any two)
        a)Methods of computer selection  b)Operating system  c) Application of autoCAD


Set-A
1)   What is Cad? What are the benefits of AutoCAD?
2)   Define hardware & software?
3)   Write short notes on(any two)
        a)Characteristics of computer  b)Data storage  c)Application of Auto CAD   

Set-B
1)   What is computer? Write sthe advantages of computer.
2 )Write any six drawing toolbars available in draw tool bar of autoCAD. Write their use in one sentence.
3)   Write short notes on(any two)
      a)Application of computer graphics    b)autoCAD window      c)History of computer 

Set-C
1)   What is computer? Differentiate between hardware & software.
2) What is CAD? Describe about the types of software used in autoCAD.
3) Write short notes on(any two)
        a)Methods of computer selection  b)Operating system  c) Application of autoCAD
Bachelor

Course: Bus. Mathematics II

Attempt all the questions.
1.a.    State Euler's theorem & verify Euler's theorem for the function u=ax2+2hxy+by2.     5
   b.    Give the production function V=γ[δk +(1-δ) L- ρ]-1/ρ where v is output, k is capital L is labour & γ,δ & ρ are constants find dV.                                                                           5
c.  Find the 1st & 2nd order total derivative of u w.r.to t; where u=3x2+xy,x=t2,y=1-2t      5
2.a.    Integrate                                                                                3×5=15
          a)                      b) ∫x2 3x3 dx
          c)
   b.    The demand function for a commodity is p=19-x & the supply function is p=2x+1, find the consumer's surplus at the equilibrium market price.                                                       5
3.a.    Define linearly dependent & independent vectors. Declare whether the vectors (2,-3,1), (3, -5, 2) & (4, -5, 1) are linearly dependent or independent.                                           5
   b.    Show that the vectors e1=(1,0,0), e2=(0,1,0) & e3 = (0,0,1) form a basis of R3 5
   c.    Krishna was appointed to a post at a salary of Rs. 100,000 a year with an increase each year of 10% of his salary for the previous. How much does he receive during his fifth year?       5
4.       Solve the following:                                                              2×5=10
   a) ∫axex dx
   b) let x be the marginal propensity to consume, 0<x<1. Find the value of  x+x2+x3+.........to ∞
   c) If
   d) State Homogeneous function
e) If find k so that a & b are orthogonal.

*The end*
Course: Bus. Mathematics II
Attempt all the questions.

1.a.    Integrate                                                                                3×5=15
          a)                                  b) ∫(x+3)

          c)

2.a.    Define Beta & Gamma function                                                     5
          Show that β(p,q) β(p+q,r)= β(q,r) β(q+r,p)
OR,
          Define Beta & Gamma function. Show that

   b.    Find the volumes of the solids generated by revolving about the x-axis, the areas bounded by the curve y=x2 & the lines x=0, x=5.                                                                           5

3.a.    Find the length of the curve:                                                           5
         
   b. Expand log (1+x) about x=0 by using Tylor's formula in finite form. 5
   c.    Ramesh borrows Rs. 19,682 & pays it back in 9 installments, each installment being treble of the preceding one. Find the first & the last installment. Ignore interest.               5

4. a)  Define linearly dependent & independent vector. Declare whether the vectors (-1,5,0), (16,8,-3), (-64,56,9) are linearly dependent or independent.                                                 5     
          b) Define orthogonal matrix show that the matrix is orthogonal.       5
OR
          Show that the vectors e1=(1,0,0) e2=(0,1,0) & e3=(0,0,1) form a basis for R3.


5.       Solve the following                                                               2×5=10   
          a) Integrate: ∫36x  dx
          b) Show that the series +........... is convergent.
c) Find the distance & angle between two vectors V1=(1,3)&V2=(3,1).
d) Define simpson's rule
e) Find the value of ┌(5/2) 
*The end*
Course: Mathematics II                      

 

Attempt all the questions

1. Integrate the following (Any three)                                                     (5´3)
     a)                            b) ∫x2 logx dx
     c)                              d)
2. a)  Find the volume of the solid generated by revolving the region bounded by the curve y= and the line y=2 & x=0 about the line y=2
    b)  Find the surface area generated by revolving the curve y=2,        0 ≤ x≤2 about x-axis.   5
    c) Use both rules trapezoidal rule & Simpson’s rule to estimate the value of the integral: by using n=4 and then compare the result.                                                                  5
OR
         Find the length of the curve x =;  1 ≤ y ≤ 3
3.   a) Define Beta and Gamma function. Prove that            5
      b) Define vector space & basis of a vector space V. Show that the vector e1=(1,0,0), e2=(0,1,0) & e3=(0,0,1) form a basis for R3.
      c) Find the rank of a matrix
        
4. a) Define analytic function. Show that f(z)=ex(cosy+isiny) is analytic.     5
b)   Prove that the harmonic conjugate  v(x,y) of u(x,y)=Sinhx.Sin y is   – Coshx.cosy.    5
c)   Define harmonic function. Prove that is a harmonic function.  5
5.a) Find the  Fourier sine series for periodic function.                                  5
         f(x)=   and f(x+2π)= f(x)

OR,  f(x)=
    b)  Find the complex Fourier series of  f(x)=ex if –π<x<π and  f(x+2π)=f(x).        5
6. a)     Find the sine & cosine transform of the function. f(x) = e-πx.             5
b)         Find Taylor series of f(x)=log (1+x) about x=0 by Taylor’s formula in the finite form.        5
c)         A person borrows Rs. 19682 and pays it back in 9 installments each installment being treble of the preceding one. Find the first and  the last installments. Ignore interest.
7. Attempt all the Questions.                                                             4´2.5=10
            a) Evaluate:                                                                        
            b) Change the complex number 1+i in polar form.
            c) Find the sum of the series  
            d) Define Fourier series. Define odd & even function
*The end*
Course: Mathematics II                      

Attempt all the questions

1. Integrate the following (Any three)                                                     (5´3)
     a)                                  b)
     c) ∫(logx)2 dx                               d)
2. a)  Find the length of the curve x=1≤y≤ 2. 
    b)  The circle x2+y2=r2 revolves around the x-axis. Show that the volume of the sphere is ,           5
    c) Find the lateral surface area of the cone generated by revolving the curve: , 1≤x≤5 about x-axis.                                                                                                             5
OR
         Find the area beneath the curve: y=20-x2 from x=1 to x=4 by using n=4 using
         i) rectangular rule          ii) trapezoidal rule.
3.   a) Define Beta and Gamma function show that                                                                      8
      b) Define linearly dependence & independence of vectors. Check weather the following vectors are linearly dependent or independent (3,1,-4), (2,-1,3) & (1,0,1).                          7

4. a) Define analytic function. Show that CR equations is satisfied by f(z)=z2 but not for f(z)=|z|2 when z≠0.       5
b)   Find the harmonic conjugate of v(x,y)=3x2y-y3 .                                   5
c)   Show that is a harmonic function.                                  5
5.a) Prove that the Fourier sine series of the function.                                   5
         f(x)=  
          is f(x) = sin2x+1/2 sin 4x+1/4 sin8x+……………
OR
Find Fourier sine series for f(x)= x in [0,π]
    b)  Find the complex Fourier series of f(x)=ex if –π<x<π& f(x+2π)=f(x).  5

6. a)     Find the sine & cosine transform of  f(x) = eax      where a<0             5
b)         Find Taylor series of f(x)=e-x about x=0. Moreover find e-1.              5
c)         There are ten varieties of birds in a zoo, the number of each variety of birds being double of the number of the another variety. If the number in the first variety is 2, find the number in the last variety. Also, find the total number of all varieties of birds in the zoo.

7. Attempt all the Questions.                                                             4´2.5=10
            a) Write the relation between Beta & Gamma function. Also find value of :
            b) Change the complex number  in polar form.
            c) Find the sum of the series 1+ 
            d) Show that z is not an analytic, where z=x+iy.
*The end*
Course: Mathematics II                     
Attempt all the questions
1. Integrate the following (Any three)                                                     (5´3)
     a)                                                                                       

     b)

     c)
2. a)  Define Beta & Gamma function.
         Show that β(p,q) β(p+q,r) = β(q,r) β(q+r,p)                                           5
OR
      The demand function for a commodity is Pd=19-x & the supply function is Ps=2x+1 find the consumer's surplus at the equilibrium market.
    b)  Find the volumes of the solids generated by revolving about the x-axis, the areas bounded by the curve y=x2 & the lines x=0 , x=5                                                                                  5
    c) Find the length of the curve:                                                                   5
         x =1 ≤ y ≤ 3
3.   a)If 5
      b) Test wheather the set of vectors are linearly dependent or independent. (2,-3,1), (1,-3,-2), (3,-3,4)
      c) Expand ex about x=1 by using Taylor's formula in finite form.
4. a) Express the function f(z)=coshz in the form of u+iv                              5
b)   Show that sinhz is an analytic function.                                                5
c)   Find the harmonic conjugate & f(z)=u+iv of the function u=sinx.coshy .        5

5.a) Define Fourier sine integral & Fourier cosine integral.                            5
    b)  Find the Fourier cosine integral of f(x)=           5
c)            Show that
         . =                        5

6.a)      Find the Fourier cosine transform of the function.                             8
            f(x)=
d)             Find the Fourier sine transform of the function.
f(x) = 2e-5x +5e-2x                                                                                 7

7. Solve the following                                                                       2.5´4=10
            a) Integrate:                                                                         
            b) Show that the series 1+convergent
            c) Find the values of Ref & Imf at the point.
                               f(z)= z2+3z  at z=1+3i.
            d) Write c-R equation.
             


*The end*
1. Integrate the following (Any three)                                                     (5´3)
     a)                                                                                                          

     b)

     c)

     d)

2. a)  Define Beta & Gamma function.
         Show that β(p,q) β(p+q,r) = β(q,r) β(q+r,p)                                           5
OR,
Define Beta & Gamma function. Show that sin4θ Cos2θ dθ =
    b)  Find the volumes of the solids generated by revolving about the x-axis, the areas bounded by the curve y=x2 & the lines x=0 , x=5                                                                                  5
    c) Find the length of the curve:                                                                   5
         x =1 ≤ y ≤ 3
3.      Solve the following differential equations                                        3´5
         a) (x3+y3) dy = x2ydx
         b)
         c)
4. a) Solve the differential equation
                                                                                   5
        
b)   Expand log (1+x) about x=0 by using Tylor's formula in finite form.   5
c)   Hemanta borrows Rs. 19,682 & pays it back in 9 installments, each installment being treble of the preceding one. Find the first & the last installment. Ignore interest .                    5

5.a) Define linearly dependent & independent vector. Declare whether the vectors (-1,5,0), (16, 8, -3), (-64,56,9) are linearly dependent or independent.                                                       5

   b)      Determine the rank of the vector space spanned by the vector v1=(1,3,5,1), v2=(2,4,8,0) & v3= (3,1,7,5)    5
   c)      Define orthogonal matrix.
            Show that the matrix is orthogonal.                   5
6.a)      Let A be a matrix given by                                                                 8
           
            i) Find /A/
            ii) Does A-1 exit? Why?
            iii) Find A-1

e)              Show that
                         7
OR
            A company produces two commodities P & Q which must passes through machine M&N. One unit of P requires 12 minutes of work on machine M& 5 minutes of work on machine N. Similarly, one unit of Q requires 5 minutes of work on machine M&12 minutes of work on machine N. How many units of P& Q are produced if M operates for 2 hours & N operates for 2 hours & 49 minutes? Apply cramer's rule.
7. Solve the following                                                                          2´5=10
            a) Integrate:                                                                          
            b) Solve  
            c) Show that the series 1+convergent.
            d) Find the distance & angle between two vectors v1=(1,3) & V2 = (3,1)
            e)  then find AB & AC
             


*The end*

Course: Mathematics II                     math

Attempt all the questions

1. Integrate the following (Any three)                                                     (5´3)
     a)                                                                                            

     b)

     c)

     d)

2.a)   The circle x2+y2=a2 revolves round the x-axis. Show that the volume of the sphere generated is         8
b)      If the marginal Revenue function  MR= where a,b and c are
constomts. Show that   is the demand law.                     7
3.      Solve the following differential equations                                        3´5
         a) (x+2y-2) dx + (2x-y+3) dy = 0
         b)
         c)
4. a) When does the invene of a matrix exists ? Find the invene of if exist where
b)      Prove that

5.      Manufacturing company produces three main types of product. Each product passes through three manufacturing stages with a separate labor force assigned to each stage. The table below shows the time that an items of each type requires for each stage in the manufacturing process and the total labor in man hours available for each stage

Type A
Type B
Type C
Total labor Available
Stage 1
5
7
8
695
Stage 2
3
4
7
510
Stage 3
2
3
4
320
How many items of each type must be produced in order to use completely the man hours of labor available at each stage of the production process?                                            8
OR
            Define Vector product of two vectors. Write the geometrical interpretation of vector product of two vectors. Find the Area of Triangel determined by the vectors. Define linear Dependence and Independence of vectors.

b.         A Cheek whether the set of vectors are linearly dependent or independent. (2,-3,1), (1,-3,-2), (3,-3,4)       7
6.a)      Define Rank of a matrix find the rank of the vector space R spanned by V1= (1,4,3), V2= (-1,1,2) & V3 = (3,-3,1)                                                                                                      8
  b)       A man was appointed to a post at a salary of Rs. 1,000 a year with an yearly increase of 10% of his salary of the previous year. How much does he receive during the 8th year?    7
OR
            Expland logx about x=1 by taylor's formula in the finite form
7. a)     If ay= (3,4,5) & by= (-1,2,K), find K so that ay and by are
orthogonal                                                                                 2´5=10
    b)     Prove that
    c)     Evaluate
             


*The end* 


Course: Business Mathematics

Attempt all the questions.



1.
a)    Find the compound interest on Rs 6900 for 3 years if the interest be payable half yearly and the rate of interest for the first two years is 6% p. a. and for third year it is  9% p. a.      
Or
The original value and final value of an asset are Rs. 20, 000 and Rs. 11,720 respectively. Find the rate of compound depreciation if the asset was in use for 4 years.
b)   A girl plans to deposit $50 in a savings account at the end of each quarter for the next 6 years. Interest is earned at a rate of 8 per cent per year compounded quarterly. What should her account balance be 6 years from now? How much interest will she earn?            
c)    From 6 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done so as to include at least one lady?       
5





5


5
2.
a)    Of 100 students in and examination, 42 offered Mathematics, 35 offered Physics and 30 offered Chemistry. 20 offered none of these subjects, 9 offered Mathematics and Chemistry, 10 offered Physics and Chemistry and 11 offered Mathematics and Physics. Find the number of students
    i) offering all three subjects.      ii) Mathematics only     iii) Physics and   Chemistry only.
b)   Prove that Ö5 is not a rational number.
8





7
3.
a)    Plot the following system of inequalities and shade the region jointly satisfied by them.     y  £ 2x + 4,       y ³ -x - 2  and        y £ 4 - 4x.
b)   Sales of pre-paid mobile SIM cards are expected to vary with time so that the cumulative sale S(t), t weeks after the sales is launched by NTC, S(t), given by the following equation
                                                       .
Find an expression for the weekly rate of change in cumulative sales. Evaluate this expression of 30 week of sales.
8

7



4.
a)    Determine the domain  of the following function
                                    f(x) =
b)   Suppose that a colony of fruit flies is growing according to the exponential law P(t) = Poekt, and suppose that the size of the colony doubles in 9 days. Determine the growth constant k. At what time will the colony contain 300 fruit flies if the initial size was 100?
c)    Define the continuity of a function at point C. What are the discontinuities of the function:   f(x) = ?
5



5


5
5.
a)    Find the maximum or minimum value of the function.
         f(x) = x3 + 3x2 –9x
b)   If x3 + px2 + qx + 6 has (x - 3) as a factor and leaves a remainder 4 when divided by x - 2, find p and q.
c)    Form a quadratic equation whose roots are twice the roots of
       3x2 + 5x + 3 = 0
5

5

5
6.
a)    Evaluate:            
b)   If one root of the equation x2 - px  + q = 0 be twice the other, show that 2p2 = 9q.
c)    The total cost of making x tons of commodity is Rs.y; where y = 25 + 3x + 2. Find the marginal cost at 100 tons of output. Find also the level of output when the marginal cost is Rs 3.20.     
5

5

5
7.
Answer the following questions:
a)        Find  if x2 + y2 = 16.
b)        If A = [-3, 2) and B = (-2, 4] find the value of A ÇB.
c)        If |2x -3 | < 5, prove that -1 < x < 4
d)        Evaluate
e)         If the roots of the quadratic equation 4x2 - kx + 1 = 0 are equal
          find the possible values of k.
5*2


end

Comments

Post a Comment

Popular posts from this blog

Message,पाठ -१ पेशा (profession )

यस खण्डमा - पेशा,दक्षता,प्रविधि,अभियन्त्रिकरण,निर्माण,विद्दुत क्षेत्रमा हुने प्रयाेगात्मक शिक्षण र सिकाईकाे अाधरहरु संग्रहित छ।यी अाफ्नै अनुभवले कक्षा शिक्षणा,प्रयाेगका अनुभवमा छन् ,त्रुटि रहे सच्चाईने छ,यी सीप निजि सरकारि सेवा,घर व्यबहारमा अति लाभदायक  ठानेकाे छु।निजि र स्वध्ययान ऋृग्वेद अकविता हुदा पाठकहरुमा सीप बढाेत्तरि हुने अाश छ।डिजिटल पुस्तक सेढाई हुदा कपि,अन्य रुपमा लिनु हुदैन,अन्यथा भए गरे कानुनन हुनेछ। Professional Saturday, April 6, 2019 Welcome Electrowide Hi Guy, Here we make some practice/practical note assignment for student,teacher and  skill personnel .It makes easy to technical knowledge  skill and upgrade ability to do new jobs. Now all of electrical Diploma,Bachelor,Degree related engineering field practical works, As well as Electronics field. It make easy for student, user and skill in Nepal and aboard. we hope it  help us . Bichar bigyan पेशा (profession ) प्रयाेगात्मक नाेट /blogger.g? बिषयसुचि:- १.पाठ १ अाधरभुत(Bsaic...

पाठ-७, कम्प्युटर

computer: https://www.blogger.com/blogger.g? computer is an electronics device. पाठ-७,अंगिरामृत,अगिरस गाेत्र,दुरदराजका भाइ बन्धुत्व समेटिएकाे छ,हजुर।यश बाट ल्बग पनि खुल्छ ।मेरा लेख पढ्नु हजुर कमेन्ट पनि लेखे हुन्छ।अन्यथा नलिनु हाेस,जीवन यहि सेवामा लगाए,अन्य र भिन्न हामी बन्धुत्वमा अटाउछाै।नमन: blogger.g? कम्प्युटर- This part is presentation of class. NPI leacture Mr. Hari Bhakta Acharaya. 1.  c programming 2.  multipication 3.  basic computer   (computer,tuition,unit 1-14) 4. c note 5.  advance computer   (chapter1-21) प्रयोगशाला - class:practice Nepal Polytechnic institute e/tk'/ lrtjg Bharatpur Chitwan k|of]ufTds  Practical Date:                                       class:          ...

Buba Saharsachandra darsan 4 sumijaha

" श्रीमद्भागवतमा कलियुगको धर्म (विशेषता) बारे रोचक वर्णन छ । भनिएको छ, कलियुगमा पाखण्डको प्रधानता हुन्छ । राजा–महाराजा (शासक) हरू डाकु–लुटेरा समान हुन्छन् । राजा अत्यन्त निर्दयी एवं क्रूर हुन्छन् । लोभी त यति हुन्छन् कि राजा र लुटेरामा कुनै अन्तर हुँदैन । मनुष्य चोरी, झुट, हिंसा आदि कुकर्मबाट जीविका चलाउँछन् । कलियुगमा जोसँग धन हुन्छ, उही सदाचारी, सदगुणी मानिन्छ । जोसँग शक्ति छ, उसैले धर्म र न्याय व्यवस्थालाई आफूअनुकूल गराउन सक्छ । जो घूस दिन असमर्थ रहन्छ, उसलाई अदालतबाट सही न्याय प्राप्त हुँदैन । जसले जति बढी दम्भ र पाखण्ड देखाउन सक्छ, ऊ त्यति नै बढी साधु कहलिन्छ । (श्रीमद्भागवत, द्वादशकन्ध द्वितीयोध्याय : १–१३ )" ।